

CALORIMETRY MEASUREMENTS OF ENERGY VALUE OF SOME ALASKAN FISHES AND SQUIDS

NATIONAL MARINE FISHERIES SERVICE SEATTLE, WA

FEB 94

NOAA Technical Memorandum NMFS-AFSC-32

Calorimetry Measurements of Energy Value of Some Alaskan Fishes and Squids

by Michael A. Perez

> U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center

> > February 1994

REPRODUCED BY U.S. DEPARTMENT OF COMMERCE NATIONAL TECHNICAL INFORMATION SERVICE' SPRINGFIELD, VA 22161

NOAA Technical Memorandum NMFS

The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature.

The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The new NMFS-NWFSC series will be used by the Northwest Fisheries Science Center.

This document should be cited as follows:

Perez, M. A. 1994. Calorimetry measurements of energy value of some Alaskan fishes and squids. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-32, 32 p.

Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA.

BIBLIOGRAPHIC INFORMATION

Report Nos: NOAA-TM-NMFS-AFSC-32

Title: Calorimetry Measurements of Energy Value of Some Alaskan Fishes and Squids.

Date: Feb 94

Authors: M. A. Perez.

<u>Performing Organization</u>: National Marine Fisheries Service, Seattle, WA. Alaska Fisheries Science Center.

Type of Report and Period Covered: Technical memo.

Supplementary Notes: See also PB87-225108.

NTIS Field/Group Codes: 98F, 57L

Price: PC A03/MF A01

<u>Availability</u>: Available from the National Technical Information Service, Springfield, VA. 22161

Number of Pages: 38p

<u>Keywords</u>: *Marine fishes, *Squids, *Nutritive value, *Alaska, Measurement, Calorimetry, Calorific value, Surveys, Bering Sea, Alaska Gulf, North Atlantic Ocean, Thaloichthys pacificus, Eulachon, Clupea pallasi, Pacific herring, Mallotus villosus, Rockfish, Sebastes polyspinis.

<u>Abstract</u>: Few data exist in the literature concerning the energy content of complete fish and squid bodies, especially noncommercial species which are usually eaten whole by Alaskan pinnipeds. A total of 278 fish and squid specimens representing 20 species were collected in the Bering Sea and Gulf of Alaska during routine assessment surveys by the Alaska Fisheries Science Center. In addition, 10 squid specimens of three additional species caught in the North Pacific Ocean during 1981 and 1982 were included in the study. Total energy content of the entire fish or squid body was determined by bomb calorimetry after the specimens were thawed and weighed. The fish and squid species analyzed in the study comprised five groups: (1) very high energy; (2) high energy; (3) medium energy content; and (4) low energy density.

NOAA Technical Memorandum NMFS-AFSC-32

Calorimetry Measurements of Energy Value of Some Alaskan Fishes and Squids

by Michael A. Perez

National Marine Mammal Laboratory Alaska Fisheries Science Center 7600 Sand Point Way NE., BIN C-15700 Seattle, WA 98115-0070

U.S. DEPARTMENT OF COMMERCE

Ronald H. Brown, Secretary **National Oceanicand Atmospheric Administration** D. James Baker, Under Secretary and Administrator **National Marine Fisheries Service** Rolland A. Schmitten, Assistant Administrator for Fisheries

February 1994

This document Is available to the public through:

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

ABSTRACT

Food habits studies of marine mammals increase our understanding of the trophodynamic interrelationships of these predators within their ecosystem. In order to determine the energetic importance of specific prey in the diet and physiology of marine mammals, it is necessary to know the caloric density of these prey. Few data exist in the literature concerning the energy content of complete fish and squid bodies, especially noncommercial species which are usually eaten whole by Alaskan pinnipeds. In 1984, the National Marine Mammal Laboratory conducted a short-term study to obtain additional data on the total energy content of entire specimens of known and probable prey species. A total of 278 fish and squid specimens representing 20 species were collected in the Bering Sea and Gulf of Alaska during routine assessment surveys by the Alaska Fisheries Science Center. In addition, 10 squid specimens of three additional species caught in the North Pacific Ocean during 1981 and 1982 were included in this study. Total energy content of the entire fish or squid body was determined by bomb calorimetry after the specimens were thawed and weighed. Percent moisture and ash were also determined for each specimen. Energy values of dry mass, ash-free dry mass, and wet mass were calculated. Based on the energy content of ash-free dry mass, the fish and squid species analyzed in this study comprised five groups: 1) very high energy (x = 7.7 kcal/g) species such as eulachon, *Thaleichthys pacificus*; 2) high energy (x = 6.6 kcal/g) species such as Pacific herring, Clupea pallasi, capelin, Mallotus villosus, and magistrate armhook squid, Berryteuthis magister; 3) medium energy content (x = 6.1 kcal/g) species such as northern rockfish, Sebastes polyspinis, and boreal clubhook squid, Onychoteuthis borealijaponica; 4) low energy density (x = 5.8 kcal/g) species such as walleye pollock, Theragra chalcogramma, and arrowtooth flounder, Atheresthes stomias; and 5) very low caloric density (x = 5.4 kcal/g) species such as Pacific cod, Gadus macrocephalus, and armorhead sculpin, Gymnocanthus galeatus.

THIS PAGE INTENTIONALLY LEFT BLANK

CONTENTS

Introduction	1
Methods	2
Results and Discussion	6
Acknowledgments	16
Citations	17
Appendix	19

Preceding page blank

INTRODUCTION

Food habits studies of marine mammals increase our understanding of the trophodynamic interrelationships of predators within their ecosystem. In order to determine the importance of specific prey in the diet and physiology of marine mammals, it is necessary to know the energy value of these prey. Few data exist in the literature concerning the energy content of complete fish and squid bodies, especially noncommercial species which are usually eaten whole by Alaskan pinnipeds.

Because of the constant summation of heat in biological systems, the measurement of chemical energy as the heat of combustion is frequently used to evaluate animal energetics (Robbins 1983). Differences in the chemical or gross energies of either plants or animals are due to the energy contents of the specific chemical compounds and their relative proportions. The bomb calorimeter measures the amount of heat released when a sample of plant or animal tissue is completely oxidized (Robbins 1983). The sample is placed in a combustion chamber containing excess oxygen, which is then immersed in an insulated water jacket and ignited. The temperature rise in the surrounding water is proportional to the sample's chemical energy content. For instance, when a 1 g sample is ignited and produces a temperature rise of 4°C in 1,000 g of water, the chemical energy content of the sample is 4 kcal.

Watt and Merrill (1963), Kizevetter et al. (1965), Kizevetter (1971), Sidwell (1981), Croxall and Prince (1982), Vlieg (1984a, 1984b), Krzynowek and Murphy (1987), Gooch et al. (1987) have provided lists of energy values for many fish and cephalopod species. These reference sources provide energy density data based on proximate composition methodology where the percentages of protein, fat, and carbohydrate in a sample of body tissue are determined, and the energy density (kcal/g) of that tissue is calculated using standard constant conversion factors for each nutrient. One limitation of the data provided in much of the literature is that the published energy values often refer to edible portions of the food source in terms of human consumption and their commercial value. However, pinnipeds often consume their prey whole in the wild and eat significant quantities of noncommercial fish and squid species. Miller (1978) provided energy values based on heats of combustion from bomb calorimetry for four fish and squid species eaten by northern fur seals, *Callorhinus ursinus*.

In 1983-85 the National Marine Mammal Laboratory (NMML), Alaska Fisheries Science Center (AFSC), conducted a study using bomb calorimetry procedures to obtain additional data on the total energy content of entire specimens of known and probable prey species. A total of 267 fish and 11 squid specimens were collected in the Bering Sea and Gulf of Alaska during routine assessment surveys conducted by the AFSC during 1984. In addition, 10 squid specimens collected on marine mammal-fisheries interactions research cruises in the North Pacific Ocean during 1981 and 1982 were also included in this study. A total of 18 fish and 5 squid species were analyzed in the study (Table 1). The results of the study are reported in this paper.

METHODS

During 1984, specimens collected for this study were taken opportunistically from the discards of groundfish trawl survey catches in the Bering Sea and Gulf of Alaska (Fig. 1) by research scientists of the Resource Assessment and Conservation Engineering Division (RACE), AFSC. Ten additional squid specimens were made available for the study from collections taken by NMML research scientists in 1981-82 aboard Japanese research cruises in the North Pacific Ocean. The dates, vessels, and locations of collection of samples in this study are listed in Appendix Table A-1. With the exception of collection group number 5 (Appendix Table A-1), the haul number was recorded for each specimen. Date, position, and depth (in fathoms) of collection for each trawl haul were obtained later from RACE data records.

Specimens were placed in ship storage freezers immediately after collection. With the exception of the squids collected during 1981-82, all specimens were kept frozen until they were shipped to an analytical laboratory for bomb calorimetry (shipment dates are listed in Appendix Table A-l). Fishes and squids were retained in storage freezers on board the vessel or at the

2

Common Name <i>a</i>	Scientific Name	
Fishes		
Pacific herring	Clupea pallasi	
Capelin	Mallotus villosus	
Eulachon	Thaleichthys pacificus	
Pacific cod	Gadus macrocephalus	
Walleye pollock	Theragra chalcogramma	
Pacific ocean perch	Sebastes alutus	
Dusky rockfish	Sebastes ciliatus	
Northern rockfish	Sebastes polyspinis	
Rockfish (unidentified) b	Sebastes sp.	
Sablefish	Anoplopoma fimbria	
Armorhead sculpin	Gymnocanthus galeatus	
Blackfin sculpin	Malacocottus kincaidi	
Sculpin ^c	Triglops sp.	
Sculpin (unidentified) d	Cottidae	
Snailfish	Liparis sp.	
Searcher	Bathymaster signatus	
Pacific sandfish	Trichodon trichodon	
Arrowtooth flounder	Atheresthes stomias	
Squids		
Magistrate armhook squid <i>e</i>	Berryteuthis magister	
Gonate squid (unidentified) f	Berryteuthis sp.	
Boreopacific gonate squid	Gonatopsis borealis	
Boreal clubhook squid	Onychoteuthis borealijaponica	
Neon flying squid	Ommastrephes bartrami	

Table 1 .--List of species of fishes and squids which were analyzed for energy value by bomb calorimetry measurements in this study.

^a References for common names: Roper et al. (1984); Turgeon et al. (1988); and Robins et al. (1991).

^b All specimens of this unidentified rockfish group in this study belong to a fourth species of the genus Sebastes.

^c All specimens of this fish group in this study belong to the same species of the genus *Triglops*.

^d All specimens of this unidentified fish group in this study belong to a fourth sculpin species, which may be assigned to any genus of the family Cottidae.

^e Also known as schoolmaster gonate squid.

f This unidentified squid group belongs to a second species of the genus *Berryteuthis*.

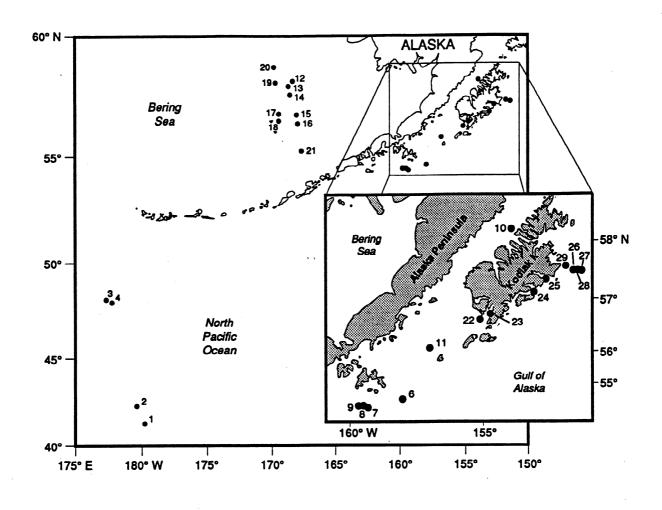


Figure 1.--Locations in the Bering Sea and North Pacific Ocean where the fishes and squids analyzed in this study were collected.* Locations in the Gulf of Alaska are shown in the inset. The numbers shown in the figure indicate the collection groups enumerated in Appendix Table A-l.

Kodiak, Alaska, Laboratory (RACE) until they could be sent to Seattle in containers packed with dry ice. Upon delivery to NMML, specimens were promptly placed in the freezer. Samples were Subsequently shipped to the contract calorimetry analytical laboratory within 24 hours after receipt by NMML. All specimens were shipped by overnight air freight express in freeze-safe containers containing blue-ice packs. Bomb calorimetry analyses were conducted after specimens thawed, and data results were sent to NMML within 30 days.

The 10 squid specimens collected during 1981-82 (collection groups 1-4; Appendix Table A-1) had been collected for different research purposes and had been previously thawed. Rather than simply being discarded, the specimens were also included in this calorimetry study because of the limited information on squids. Five of the squids were incomplete, with a tentacle or other body part missing (Appendix Table A-2).

Measurements of wet mass were not recorded by shipboard personnel at the time of collection, but only after thawing when specimens were received for calorimetry operations. The wet mass (g) of each specimen is given in Appendix Table A-2. Sex and length were not recorded for most of the 288 specimens in Appendix Table A-2. However, this information is given in Appendix Table A-3 for those specimens with available data. Standard length measurements (cm) were recorded for fish and dorsal mantle length (cm) for some squid specimens.

Except for the 5 incomplete squid specimens collected during 1981-82, measurements were made of the total energy content of each whole fish and squid specimen. Total energy content was determined using a Parr adiabatic bomb calorimeter by Woodson-Tenet Laboratories in Memphis, Tennessee, who made all of the bomb calorimetry and body mass measurements. Percent moisture and ash were also determined for each specimen. Energy values of dry mass, ash-free dry mass, and wet mass were calculated from these data. General accounts of the instrumentation and procedures used in bomb calorimetry are provided by Grodzinski et al. (1975) and Robbins (1983).

An analysis of variance (ANOVA) was performed on the means of caloric density of ash-free dry mass and wet mass of each of 17 of the 23 species of fish and squid in Table 1 (no

5

unidentified species and N>l for each species) to test the null multisample hypothesis of equal means. For the ANOVA, the following species groups listed in Table 1 were excluded: rockfish (unidentified), *Sebastes* sp.; sculpin (unidentified), Cottidae; gonate squid (unidentified), *Berryteuthis* sp.; boreopacific gonate squid, *Gonatopsis borealis;* neon flying squid, *Ommastrephes bartrami*. A Student-Newman-Keuls test (Zar 1984) was used to perform multiple-comparison tests to determine which of the 17 species had significantly different energy values from each other. Species which did not have significantly different means of caloric density were grouped (group names were arbitrarily assigned) together, and pooled means and standard errors were calculated for energy content of ash-free dry mass and wet mass.

A paired t-test with an assumption of unequal variance was used to compare energy values of ash-free dry mass of species, with sample sizes >10, collected in different seasons or geographical areas. Specimens taken during February and March (Appendix Table A-I) were pooled to comprise the winter collections.

RESULTS AND DISCUSSION

Measurements of dry mass energy values for the 288 fish and squid specimens from 18 fish and 5 squid species analyzed in this study ranged from a minimum of 3.0 kcal/g for walleye pollock, *Theragra chalcogramma*, to a maximum of 7.7 kcal/g for eulachon, *Thaleichthys pacificus*, (Appendix Table A-2). Among the fishes, mean moisture content was lowest for eulachon (64%) and highest for blackfin sculpin, *Malacocottus kincaidi*, (80%) (Fig. 2). The mean moisture content of the squid species was between 74% and 82% (Table 2). Mean ash content (as a percentage of dry mass) was lowest for eulachon (4%) (ignoring the solitary snailfish specimen with zero measurable ash content) and highest for armorhead sculpin, *Gymnocanthus galeatus*, (24%) (Table 2). Squid species had a lower mean ash content (<9%) than several fish species, e.g., walleye pollock (13%) and armorhead sculpin (24%) (Table 2). Mean and standard

6

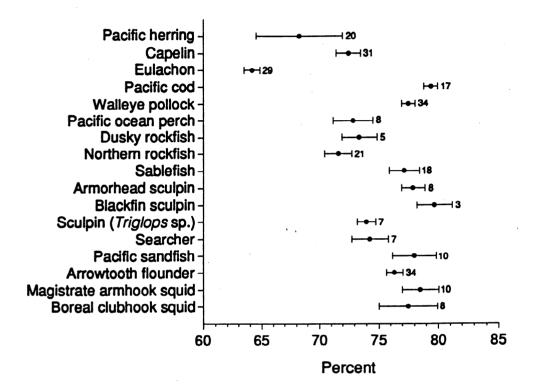


Figure 2.--Moisture content (percent; mean + 95% confidence intervals) of whole specimens of 17 fish and squid species analyzed in this study. The sample size is shown to the right of each confidence interval.

]	Energy val	lue (kcal/g	g)	
		Pero mois		Percent ash (dry mass)		Dry mass		Ash-free dry-mass		Wet mass (estimate)	
	n	x	SD	x	SD	\overline{x}	SD	\overline{x}	SD	\overline{x}	SL
rishes	<u></u>				<u></u>		<u></u>				
Pacific herring	20	68.3	7.9	8.76	3.08	6.21	1.07	6.79	0.96	2.05	0.83
Capelin	31	72.5	2.7	7.49	2.92	6.06	0.57	6.55	0.50	1.68	0.29
Eulachon	29	64.2	1.7	4.11	0.58	7.35	0.19	7.66	0.20	2.63	0.1
Pacific cod	17	79.4	1.0	16.90	2.43	4.54	0.18	5.47	0.28	0.94	0.0
Walleye pollock	34	77.5	1.4	13.38	2.13	4.94	0.55	5.70	0.63	1.11	0.1
Pacific ocean perch	8	72.9	2.0	15.99	1.85	5.41	0.32	6.43	0.32	1.47	0.1
Dusky rockfish	5	73.4	1.1	16.02	0.88	5.50	0.19	6.55	0.16	1.46	0.0
Northern rockfish	21	71.6	2.5	14.85	2.35	5.23	0.28	6.14	0.27	1.49	0.2
Rockfish (unidentified)	9	73.8	4.5	16.62	1.89	5.22	0.45	6.26	0.54	1.38	0.3
Sablefish	18	77.2	2.5	9.85	1.66	5.64	0.40	6.26	0.39	1.30	0.2
Armorhead sculpin	8	77.9	1.1	23.58	3.56	4.13	0.31	5.40	0.30	0.91	0.0
Blackfin sculpin	3	79.7	0.6	23.13	1.27	4.10	0.20	5.36	0.31	0.84	0.0
Sculpin (Triglops sp.)	7	74.0	0.8	14.60	6.68	4.76	0.21	5.61	0.37	1.24	0.0
Sculpin (unidentified)	5	77.0	1.0	17.22	1.67	4.84	0.17	5.85	0.15	1.11	0.0
Snailfish (unidentified)	1	78.0	-	0.00	-	4.10	-	4.10	-	0.91	
Searcher	7	74.3	1.6	13.50	1.16	5.13	0.15	5.93	0.20	1.32	0.0
Pacific sandfish	10	78.0	2.5	13.03	1.34	5.28	0.32	6.07	0.32	1.17	0.1
Arrowtooth flounder	34	76.3	1.8	11.37	1.83	5.17	0.36	5.83	0.32	1.23	0.1
quids											
Magistrate armhook squid	10	78.5	2.1	7.33	0.94	6.12	0.40	6.61	0.39	1.32	0.1
Gonate squid (Berryteuthis sp.)	1	82.0	-	8.30	-	5.10	-	5.56	-	0.92	
Boreopacific gonate squid	1	82.0		5.00	-	6.20	-	6.52	-	1.12	
Boreal clubhook squid	8	77.5	2.9	5.30	0.74	5.73	0.18	6.04	0.20	1.29	0.1
Neon flying squid	1	74.0	-	6.20	-	6.00	-	6.38	-	1.56	

Table 2.--Mean and standard deviation of percent moisture, percent ash, and energy value of some whole fish and squid species of the Bering Sea and North Pacific Ocean^a

^a Based on the data in Appendix Table A-2.

deviation values for energy content of dry mass, ash-free dry mass, and wet mass of the 18 fish species and 5 squid species in this study are given in Table 2.

Based on the mean caloric density of ash-free dry mass, the fish and squid species analyzed in this study appeared to align themselves into five groups (Fig. 3): 1) very high energy (x =7.7 kcal/g, SE = 0.04 kcal/g) species such as eulachon; 2) high energy (x = 6.6 kcal/g, SE =0.07 kcal/g) species such as Pacific herring, Clupea pallasi, capelin, Mallotus villosus, Pacific ocean perch, Sebastes alutus, dusky rockfish, Sebastes ciliatus, and magistrate armhook squid, *Berryteuthis* magister; 3) medium energy content, (x = 6.1 kcal/g, SE = 0.04 kcal/g) species such as northern rockfish, Sebastes polyspinis, sablefish, Anoplopoma fimbria, searcher, Bathymaster signatus, Pacific sandfish, Trichodon trichodon, and boreal clubhook squid, Onychoteuthis *borealijaponica*; 4) low energy density (x = 5.8, kcal/g, SE = 0.06 kcal/g) species such as walleye pollock, sculpins belonging to Triglops sp., and arrowtooth flounder, Atheresthes stomias; and 5) very low caloric density (x = 5.4 kcal/g, SE = 0.05 kcal/g) species such as Pacific cod, Gadus macrocephalus, armorhead sculpin, and blackfin sculpin. Energy values for wet mass generally showed similar groupings of energy content among species (Fig. 4). However, comparison of the mean caloric density. of wet mass of the 17 species examined indicated that there was a wider distribution of medium to high energy species comprising a total of six distinct groups: 1) extremely high energy (x = 2.6 kcal/g, SE = 0.02 kcal/g) species such as eulachon; 2) very high energy (x = 2.0 kcal/g, SE = 0.18 kcal/g) species such as Pacific herring; 3) high energy (x = 1.7 kcal/g, SE = 0.05 kcal/g) species such as capelin; 4) medium energy content (x = 1.4 kcal/g, SE = 0.02 kcal/g) species such as northern rockfish and magistrate armhook squid; 5) low energy density (x = 1.2 kcal/g, SE = 0.02 kcal/g) species such as walleve pollock and arrowtooth flounder; and 6) very low caloric density (x = 0.9 kcal/g, SE = 0.01 kcal/g) species such as Pacific cod and armorhead sculpin (Fig. 4).

The ash-free dry mass energy value of eulachon caught in March (7.8 kcal/g) in the Gulf of Alaska was significantly greater (P<0.05) than that of eulachon specimens taken in August (7.5 kcal/g) in the Gulf of Alaska (Table 3). However, there was no significant difference in

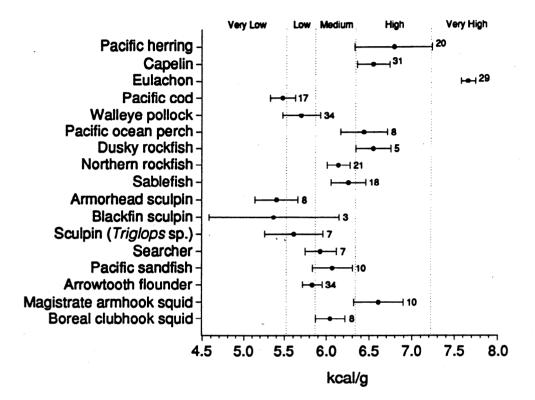


Figure 3.--Energetic density (kcal/g; mean + 95% confidence intervals) of ash-free dry mass of 17 fish and squid species analyzed in this study. The sample size is shown to the right of each confidence interval. The reference lines separate the species into five groups which have significantly different levels of caloric density.

Figure 4.--Estimated energetic density (kcal/g; mean + 95% confidence intervals) of wet mass (whole bodies) of 17 fish and squid species analyzed in this study. The sample size is shown to the right of each confidence interval. The reference lines separate the species into six groups which have significantly different levels of caloric density.

			En	ergy valu	ie (kcal/g)		
Species	Comparison group	n	\overline{x}	SD	95% CI	P	
	Gulfo	f Alaska					
Eulachon	Winter Summer	19 10	7.77 7.46	0.113 0.169 _.	7.71 - 7.82 7.35 - 7.58	0.0002	*
Walleye pollock	Winter Summer	10 20	5.69 5.64	0.164 0.798	5.58 - 5.79 5.28 - 6.02	0.8301	
Arrowtooth flounder	Winter Summer	13 •• 11	5.92 5.82	0.225 0.442	5.79 - 6.06 5.54 - 6.11	0.4965	
•	Sun	nmer					
Herring	Bering Sea Gulf of Alaska	10 10	5.92 7.66	0.380 0.312	5.66 - 6.17 7.45 - 7.87	<0.0001	*
Capelin	Bering Sea Gulf of Alaska	16 15	6.51 6.59	0.426 0.598	6.29 - 6.73 6.27 - 6.91	0.6871	
Arrowtooth flounder	Bering Sea Gulf of Alaska	10 11	5.71 5.82	0.260 0.442	5.54 - 5.88 5.54 - 6.10	0.4917	
	Different are	ea and sea	ason				
Northern rockfish	Bering Sea (Summer) Gulf of Alaska (Winter)	11 10	6.27 5.99	0.185 0.281	6.15 - 6.39 5.80 - 6.18	0.0180	*

Table L-Two-tailed t-test probabilities (P), based on an assumption of unequal variance, for comparisons of energy values of ash-free dry mass of fish specimens caught in different seasons or areas.

* = Significant difference

energy values of ash-free dry mass between winter and summer catches of both walleye pollock and arrowtooth flounder in the Gulf of Alaska (Table 3). The ash-free dry mass energy value of Pacific herring (Table 3) caught in summer in the Bering Sea (5.9 kcal/g) was significantly less (P<0.05) than that of herring specimens taken at approximately the same time in the Gulf of Alaska (7.7 kcal/g). Conversely, northern rockfish specimens taken in the Bering Sea in summer (6.3 kcal/g) had a significantly greater (P<0.05) energy value than that of specimens taken in the Gulf of Alaska in winter (6.0 kcal/g) (Table 3). But there was no significant difference in energy value of ash-free dry mass of capelin or arrowtooth flounder between catches in summer from the Bering Sea and from the Gulf of Alaska (Table 3).

The content of fat in the flesh and other parts of the body of some fish species (e.g., Pacific herring; capelin; rockfishes, Scorpaenidae) changes significantly during the year between spawning (summer) and foraging (winter) periods (Kizevetter 1971; Jangaard 1974; Bigg et al. 1978). The spawning period for eulachon is May and June in the eastern Bering Sea and May in southeast Alaska and on the Alaskan Peninsula (Macy et al. 1978; Wespestad 1987). The difference in energy density of eulachon between winter (March; 7.8 kcal/g) and summer (August; 7.5 kcal/g) in the Gulf of Alaska (Table 3) probably reflects changes in caloric density due to spawning times. Likewise, the difference in energy content of Pacific herring between areas during summer is also due to regional differences in spawning times since spawning occurs during March-April in the Gulf of Alaska and May-July in the southeast Bering Sea (Niggol 1982). Fat content also varies by age, body mass, or stage of migration of the fish (e.g., salmon, Oncorhynchus spp.; sablefish) (Kizevetter 1971). For many other fishes (e.g., walleye pollock, other gadids, sculpins, Cottidae) the fat content of the body does not vary appreciably during the year (Kizevetter 1971). However, Troy Buckley (Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, 7600 Sand Point Way N.E., Seattle, WA 98115, pers. comm.) has compiled a list of recent unpublished data showing that the energetic density of walleye pollock may vary by locality and time of year.

13

The energy values for dry mass and ash-free dry mass are measurements taken from combustion of the specimen material using bomb calorimetry methods accounting for the measurable mass of the material and percent moisture and ash content. In contrast, the wet mass energy values based on these data are only estimates of the true wet mass energy values because the original wet mass of the specimens was not measured at the time of collection. However, 10 of the squid specimens had been previously measured and weighed and provide an indication of the relative difference between the estimates reported in this study and the true energy values for wet mass. Table 4 presents a comparison of calculations based on two sets of wet mass measurements taken approximately 4 months apart and using the same sample measurements of total specimen energy content from bomb calorimetry. The first set of wet mass measurements were all recorded at the time of bomb calorimetry after thawing of the specimens during and after shipment to the analytical laboratory. The second set of measurements had been recorded previously during biological examination of the specimens after thawing and draining of the squid specimens to remove excess water from the body cavity. (This second set of measurements is more likely to indicate the actual living weight of the squid.) The two sets of calculations of energy content values for wet mass (Table 4) suggest that the estimates in Table 2, Appendix Table A-2 and Figure 4 are approximately 10% lower than the probable values for wet mass energy content from freshly caught squid. This is presumably true for the fish species as well.

The quality of frozen fish is influenced by many different considerations. Among the most important are composition of fish, pre-freezing handling and treatment, method of freezing, and the environment during storage and handling (Stansby 1963). Therefore, the energy density values reported in this study may be somewhat less than values which might be obtained directly from freshly caught specimens. The effect of energy loss due to freezing and shipment in this study is unknown. However, because the methods used in this study were consistent among samples, it is unlikely that any loss due to freezing processes and storage times affected the relative relationship (Fig. 3) of energy value measurements among species in any significant way.

14

Table 4Comparison of wet mass measurements and their estimated energy value for squid	
specimens collected in the North Pacific Ocean that were refrozen and thawed for	
caloric content analyses (A) following a previous period of freezing and thawing for	
biological measurements (B) several months earlier?	

		Total s	pecimen	Energy value					
Species/ Sample number ^b	Collection group ^c	(A) Wet mass (g) ^d	(B) Wet mass (g)	Total sample (kcal) ^d	(A) Wet mass (estimate) (kcal/g)	(B) Wet mass (estimate) (kcal/g)	Ratio (B/A) (%)		
Boreopacifi	c gonate squid								
279	3	783	678	873	1.12	1.29	115		
Boreal club	hook squid								
280	_ 1	362	331	565	1.56	1.71	109		
281	1	242	209	386	1.60	1.85	116		
282	2	785	700	923	1.18	1.32	112		
283	2	714	641	855	1.20	1.33	111		
284	2	800	713	957	1.20	1.34	112		
285	2	864	789	1,100	1.27	1.39	110		
286	2	687	576	742	1.08	1.29	119		
287	4	715	671	886	1.24	1.32	107		
Neon flying	squid								
288	1	1,721	· 1,674	2,680	1.56	1.60	103		

a All specimens were immediately frozen after collection. Total wet mass for (A) was measured upon receipt by the analytical laboratory. Total wet mass for (B) was previously measured following a period of initial thawing for biological measurements and species identification before refreezing.
 b Identical to the samples listed in Appendix Table A-2.

^c The date and location of each collection group are given in Appendix Table A-1. Each of the squid samples collected and frozen in 1981 and 1982 were originally thawed and measured in July 1983, and subsequently refrozen for energy content analyses in November 1983.

^d From Appendix Table A-2.

ACKNOWLEDGMENTS

I wish to thank the staff of Woodson-Tenet Analytical Laboratories, Memphis, Tennessee, who conducted all of the calorimetry analyses of the fish and squid samples reported in this study. Ben Kearley, Western Administrative Support Center, NOAA, Dept. of Commerce, assisted with the shipment of frozen specimens to Woodson-Tenet Analytical Laboratories. Chris Boucher and Pat Gearin of NMML collected the 10 squid samples taken in 1981 and 1982 which were identified and measured by Cliff Fiscus of NMML in 1983. Eric Brown, Jeff June, Ron Payne, Doug Smith, Phil Wyman, Harold Zenger, and other past and present personnel of the RACE Division, AFSC, collected and identified the fish and other squid specimens used in this study. Their cooperation and efforts in this study are greatly, appreciated.

CITATIONS

- Bigg, M. A., I. B. MacAskie, and G. Ellis. 1978. Studies on captive fur seals. Progress Rep. No. 2. Can. Fish. Mar. Serv., Manuscr. Rep. 1471, 21 p.
- Croxall, J. P., and P. A. Prince. 1982. Calorific content of squid (Mollusca: Cephalopoda).. Br. Antarct. Surv. Bull. 55:27-31.
- Gooch, J. A., M. B. Hale, T. Brown, Jr., J. C. Bonnet, C. G. Brand, and L. W. Regier. 1987. Proximate and fatty acid composition of 40 southeastern U.S. finfish species. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 54,23 p.
- Grodzinski, W., R.Z. Klekowski, and A. Duncan. 1975. Methods for ecological bioenergetics. IBP Handbook No. 24. Blackwell Scientific Publ., Oxford, UK, 367 p.
- Jangaard, P. M. 1974. The capelin (*Mallotus* villosus): Biology, distribution, exploitation, utilization and composition. Fish. Res. Board Can. Bull. 186.
- Kizevetter, I. V. 1971. Tekhnologicheskaya i khimicheskaya kharakteristika promyslovykh ryb tikhookeanskogo basseina. [Chemistry and technology of Pacific fish.] Izd. "Dal'izdat", Vladivostok, 297 p. [Transl. from Russian by Israel Program Sci. Transl., 1973, 304 p.] (Available from Natl. Tech. Inf Serv., Springfield, VA, as TT72-50019.)
- Kizevetter, I. V., E. F. Kleie, A. A. Kirillova, O. M. Mel'nikova, V. M. Myasoedova, and L. Ya. Ertel'. 1965. Tekhnologicheskaya kharakteristika Beringovomorskikh ryb. [Technological characteristics of Bering Sea fishes.] Tr. Vses. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. (VNIRO) 58 [Izv. Tikhookean. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. (TINRO) 53]:201-272. [Transl. from Russian by Israel Program Sci. Transl., 1968, p. 191-258 In P. A. Moiseev (editor), Soviet fisheries investigations in the northeast Pacific, Pt. 4.] (Available from Natl. Tech. Inf Serv., Springfield, VA, as TT67-51206.)
- Krzynowek, J., and J. Murphy. 1987. Proximate composition, energy, fatty acid, sodium, and cholesterol content of finfish, shellfish, and their products. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 55, 53 p.
- Macy, P. T., J. M. Wall, N. D. Lampsakis, J. E. Mason. 1978. Resources of non-salmonid pelagic fishes of the Gulf of Alaska and eastern Bering Sea, Part 1--Introduction, general fish resources and fisheries, review of literature on non-salmonid pelagic fish resources. Unpubl. final rep., Task A-7, Outer Continental Shelf Environmental Assessment Program RU 64/354, 356 p. (Available from Natl. Mar. Mammal Lab. Library, Alaska Fish. Sci. Cent., 7600 Sand Point Way N.E., Seattle, WA 98115-0070.)

- Miller, L. K. 1978. Energetics of the northern fur seal in relation to climate and food resources of the Bering Sea. U.S. Marine Mammal Comm. Rep. MMC-75/08, 27 p. (Available from Natl. Tech. Inf Serv., Springfield, VA, as PB-275296.)
- Niggol, K. 1982. Data on fish species from Bering Sea and Gulf of Alaska. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-29, 125 p.
- Robbins, C. T. 1983. Wildlife feeding and nutrition. Academic Press, New York, NY, 343 p.
- Robins, C. R., R. M. Bailey, C. E. Bond, J. R. Brooker, E. A. Lachner, R. N. Lea, andW. B. Scott. 1991. Common and scientific names of fishes from the United States and Canada. 5th ed. Am. Fish. Soc. Spec. Publ. 20, 183 p.
- Roper, C. F. E., M. J. Sweeney, and C. E. Nauen. 1984. FAO species catalogue, Vol. 3: Cephalopods of the world. FAO Fish. Synop. 125 (Vol. 3), 277 p.
- Sidwell, V. D. 1981. Chemical and nutritional composition of finfishes, whales, crustaceans, mollusks, and their products. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/SEC-11,432 p.
- Stansby, M.E. 1963. Industrial fishery technology. Reinhold Publ. Corp., New York, 393 p.
- Turgeon, D. D., A. E. Bogan, E. V. Coan, W. K. Emerson, W. G. Lyons, W. L. Pratt, C. F. E. Roper, A. Scheltema, F. G. Thompson, and J. D. Williams. 1988. Common and scientific names of aquatic invertebrates from the United States and Canada: mollusks. Am. Fish. Soc. Spec. Publ. 16, 277 p.
- Vlieg, P. 1984a. Proximate analysis of commercial New Zealand fish species. 2. N. Z. J. Sci. 27:427-433.
- Vlieg, P. 1984b. Proximate composition of New Zealand squid species. N. Z. J. Sci. 27:145-150.
- Watt, B. K., and A. L. Merrill. 1963. Composition of foods...raw, processed, prepared. U.S.. Dep. Agric., Agric. Handb. 8, 190 p.
- Wespestad, V. G. 1987. Population dynamics of Pacific herring (*Clupea pallasii*), capelin (*Mallotus villosus*), and other coastal pelagic fishes in the eastern Bering Sea, p. 55-60 In MBC Applied Environmental Sciences (compilers), Forage fishes of the southeastern Bering Sea, Proceedings of a conference, 4-5 November, 1986, Anchorage AK. OCS Study MMS 87-0017. U.S. Dep. Interior, Minerals Manage. Serv., Alaska OCS Region, Anchorage, AK 99508-4302.
- Zar, J. H. 1984. Biostatistical analysis. 2nd. ed. Prentice-Hall, Englewood Cliffs, NJ, 718 p.

APPENDIX

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix Table A-L-Date, location, and depth of sample collection and date of shipment for calorimetry analysis of samples collected for this study.

		Sample collection i	nformation		• • • • • • • • • • • • • • • • • • •	Calorimetry
Collection group	Vessel	Date	Latitude	Longitude	Trawl depth (fathoms)	analysis shipment date
1	Japanese RV Oshoro Maru	14 June 1981	41°07' N	179°59' W	Surface gillnet	21 November 1983
2	Japanese RV Oshoro Maru	16 June 1981	42°03' N	1 79°53 ' E	Surface gillnet	21 November 1983
3	Japanese RV Kumamoto Maru	24 June 1982	47°55' N	177°39' E	Surface gillnet	21 November 1983
4	Japanese RV Kumamoto Maru	20 July 1982	47°58' N	177°31' E	Surface gillnet	21 November 1983
5	NOAA RV Miller Freeman	February 1984	Western Gu	ulf of Alaska	Unknown	22 May 1984
6	NOAA RV Miller Freeman	18 February 1984	54°32' N	158°54' W	164	28 June 1984
7	NOAA RV Miller Freeman	23 February 1984	54°23' N	160°08' W	90	28 June 1984
8	NOAA RV Miller Freeman	23 February 1984	54°24' N	160°13' W	85	28 June 1984
9	NOAA RV Miller Freeman	24 February 1984	54°24' N	160°18' W	86	28 June 1984
10	NOAA RV Miller Freeman	3 March 1984	58°06' N	153°34' W	99	18 April 1984
11	NOAA RV Miller Freeman	9 March 1984	56°10' N	156°09' W	128	18 April 1984
12	NOAA RV Chapman	3 July 1984	58°01' N	168°25' W	40	24 October 1984
13	NOAA RV Chapman	3 July 1984	57°50' N	168°40' W	40	24 October 1984
14	NOAA RV Chapman	4 July 1984	57°30' N	168°38' W	40	24 October 1984
15	NOAA RV Chapman	5 July 1984	56°40' N	168°17' W	60	24 October 1984
16	NOAA RV Chapman	5 July 1984	56°20' N	168°14' W	87	24 October 1984
17	NOAA RV Chapman	6 July 1984	56°39' N	169°28' W	40	24 October 1984
18	NOAA RV Chapman	6 July 1984	56°22' N	169°28' W	75	24 October 1984
19	NOAA RV Chapman	8 July 1984	58°00' N	169°41' W	40	24 October 1984
20	NOAA RV Chapman	8 July 1984	58°40' N	169°47' W	38	24 October 1984
21	NOAA RV Chapman	15 July 1984	55°05' N	16 7°39' W	187	24 October 1984
22	FV Ocean Spray	1 August 1984	56°46' N	154°26' W	35	4 February 1985
23	FV Ocean Spray	1 August 1984	56°55' N	154°05' W	43	4 February 1985
24	FV Ocean Spray	3 August 1984	57°18' N	152°56' W	49	4 February 1985
25	FV Ocean Spray	4 August 1984	57°28' N	152°46' W	49	4 February 1985
26	FV Ocean Spray	4 August 1984	57°30' N	151°50' W	47	4 February 1985
27	FV Ocean Spray	4 August 1984	57°30' N	151°48' W	48	4 February 1985
28	FV Ocean Spray	5 August 1984	57°30' N	151°49' W	49	4 February 1985
29	FV Ocean Spray	5 August 1984	57°31' N	151°56' W	46	4 February 1985

FV = fishing vessel

NOAA = National Oceanic and Atmospheric Administration

RV = research vessel

^a Specimens were frozen at the time of collection, but thawed, drained, identified and measured on 14 July 1983. They were subsequently refrozen and saved for calorimetry analysis later that year.

^b Specimens were frozen at the time of collection, but thawed, drained, identified and measured on 20 July 1983. They were subsequently refrozen and saved for calorimetry analysis later that year.

				Whole body	ý		Energy value				
Species/ Sample number	Collection group ^a	Wet mass (g) ^b	Percent moisture	Dry mass (g)	Percent ash ^C	Ash-free dry mass (g)	Total sample (kcal)	Dry mass (kcal/g)	Ash-free dry mass (kcal/g)	Wet mass (estimate (kcal/g)	
Pacific 1	nerring										
1	. 20	28.5	73	7.7	9.3	7.0	45	5.8	6.4	1.6	
2	20	30.9	76	7.4	15.8	6.2	39	5.2	6.2	1.3	
3	20	43.7	73	11.8	9.6	10.7	66	5.6	6.2	1.5	
4	20	28.7	76	6.9	10.4	6.2	37	5.4	6.0	1.3	
5	20	29.3	78	6.4	12.7	5.6	31	4.8	5.5	1.1	
6	20	32.6	74	8.5	9.6	7.7	44	5.2	5.7	1.3	
7	20	39.7	73	10.7	10.4	9.6	60	5.6	6.2	1.5	
8	20	33.3	78	7.3	-11.8	6.5	37	5.0	5.7	1.1	
9	20	29.0	75	7.2	10.4	6.5	38	5.2	5.8	1.3	
10	20	34.3	78	7.5	13.6	6.5	34	4.5	5.2	1.0	
11	22	162.4	67	53.6	6.7	50.0	381	7.1	7.6	2.3	
12	22	180.0	57	77.4	4.7	73.8	588	7.6	8.0	- 3.3	
13	22	111.7	66	38.0	7.1	35.3	251	6.6	7.1	2.2	
14	22	121.1	60	48.4	6.8	45.2	349	7.2	7.7	2.9	
15	22	126.6	60	50.6	6.0	47.6	370	7.3	7.8	2.9	
16	22	160.9	56	70.8	5.9	66.6	531	7.5	8.0	3.3	
17	22	174.7	64	62.9	6.1	59.0	434	6.9	7.3	2.5	
18	22	169.7	60	67.9	5.7	64.0	509	7.5	8.0	3.0	
19	22	196.9	59	80.7	5.9	76.0	597	7.4	7.9	3.0	
20	22	190.0	62	72.2	6.6	67.5	491	6.8	7.3	2.6	
Capelin											
21	12	21.0	71	6.1	7.9	5.6	37	6.1	6.6	1.8	
22	12	12.8	73	3.5	6.7	3.2	21	6.2	6.5	1.6	
23	12	17.3	73	4.7	6.7	4.4	29	6.1	6.7	1.7	
24	12	17.3	72	4.8	7.1	4.5	30	6.2	6.7	1.7	
25	12	15.0	72	4.2	6.8	3.9	26	6.2	6.6	1.7	
26	13	13.7	76	3.3	15.8	2.8	14	4.2	5.1	1.0	
27	13	14.8	74	3.8	6.9	3.6	23	6.0	6.4	1.6	
28	13	16.1	71	4.7	8.3	4.3	28	5.9	6.5	1.7	
29	13	12.4	74	3.2	9.6	2.9	18	5.6	6.2	1.5	
30	19	24.0	76	5.8	7.5	5.3	35	6.0	6.6	1.5	
31	19	19.9	73	5.4	6.7	5.0	33	6.2	6.6	1.7	
32	19	19.3	72	5.4	6.4	5.1	35	6.5	6.9	1.8	
33	19	18.5	72	5.2	8.6	4.7	32	6.2	6.8	1.7	
34	19	20.3	69	6.3	5.8	5.9	41	6.5	6.9	2.0	
35	19	20.7	70	6.2	5.3	5.9	39	6.3	6.6	1.9	
36	19	19.6	74	5.1	6.9	4.7	31	6.0	6.5	1.6	

Appendix Table A-2Sample number, collection group, sex, total mass (wet and dry), percent
moisture, percent ash, ash-free dry mass, and energy value of whole bodies of fishes
and squids collected in the Bering Sea and North Pacific Ocean.

				Whole body	/ .		Energy value				
Soccies/ Sample number	Collection group ^a	Wet mass (g) ^b	Percent moisture	Dry mass · (g)	Percent ash ^c	Ash-free dry mass (g)	Total sample (kcal)	Dry mass (kcal/g)	Ash-free dry mass (kcal/g)	Wet mas (estimate (kcal/g)	
Capelin	(continued)			<u>-</u>							
37	24	9.8	69	3.1	0.0	3.0	20	6.6	6.6	2.0	
38	24	8.4	76	2.0	9.2	1.8	11	5.6	6.0	1.:	
39	24	10.5	70	3.1	7.0	2.9	21	6.6	7.2	2.	
40	24	6.2	69	1.9	0.0	1.9	12	6.2	6.2	1.9	
41	24	10.0	78	2.2	12.3	1.9	11	5.2	5.7	1.	
42	24	11.5	75	2.9	9.6	2.6	17	5.9	6.5	1.	
43	24	10.1	70	3.0	7.0	2.8	20	6.6	7.1	2.	
44	24	9.4	69	2.9	6.1	2.7	20	6.9	7.3	2.	
45	24	9.0	78	2.0	11.4	1.8	11	5.4	6.3	1.	
46	24	8.5	69	2.6	6.8	2.5	17	6.6	6.9	2.0	
47	24	10.2	74	2.7	9.6	2.4	16	5.9	6.7	1.0	
48	24	7.7	72	2.2	7.9	2.0	13	6.2	6.5	1.1	
49	24	8.9	70	2.7	6.7	2.5	18	6.6	7.2	2.0	
50	24	11.8	71	3.4	6.9	3.2	23	6.6	7.2	1.9	
51	24	6.6	75	1.7	8.8	1.5	8	4.8	5.3	1.:	
Eulacho	n										
52	10	37.9	64	13.6	3.9	13.1	102	7.5	7.8	2.3	
53	10	23.8	64	8.6	5.3	8.1	63	7.3	7.8	2.0	
54	10	43.3	62	16.5	2.9	16.0	123	7.5	7.7	2.3	
55	10	35.1	66	11.9	4.1	11.4	88	7.4	7.7	2.5	
56	10	35.3	64	12.7	4.2	12.2	94	7.4	7.7	2.1	
57	10	37.9	63	14.0	3.5	13.5	104	7.4	7.7	2.	
58	10	31.0	66	10.5	3.8	10.1	78	7.4	7.7	2.	
59	. 10	32.5	66	11.1	4.7	10.5	82	7.4	7.8	2.	
60	10	49.0	63	18.1	4.1	17.4	134	7.4	7.7	2.	
61	10	36.4	65	12.7	2.9	12.4	96	7.5	7.8	2.	
62	10	36.9	65	12.9	4.0	12.4	96	7.4	7.7	2.0	
63	10	25.5	66	8.7	5.0	8.2	65	7.5	7.9	2.:	
64	10	24.6	64	8.9	5.0	8.4	66	7.5	7.8	2.3	
65	10	29.0	66	9.9	4.1	9.5	74	7.5	7.8	2.	
66	10	36.3	64	13.1	4.2	12.5	99	7.6	7.9	2.3	
67	10	19.4	66	6.6	5.3	6.2	49	7.5	7.8	2.	
68	10	21.3	68	6.8	3.7	6.6	49	7.2	7.5	2.:	
69	10	62.9	63	23.3	4.1	22.3	179	7.7	8.0	2.3	
70	10	48.0	63	17.8	3.5	17.1	133	7.5	7.8	2.5	
71	25	37.9	59	15.5	3.7	15.0	112	7.2	7.5	3.0	
72	25	43.9	63	16.2	3.8	15.6	112	6.9	7.2	2.0	
73	25	29.4	63	10.9	4.3	10.4	78	7.2	7.5	2.3	
74	25	27.8	65	9.7	4.6	9.3	69	7.1	7.4	2.:	
75	25	51.5	65	18.0	4.0	17.3	130	7.2	7.5	2.	

.

•

				Whole body	/	Energy value				
Species/ Sample number	Collection group ^a	Wet mass (g) ^b	Percent moisture	Dry mass (g)	Percent ash ^C	Ash-free dry mass (g)	Total sample (kcal)	Dry mass (kcal/g)	Ash-free dry mass (kcal/g)	Wet mas (estimate (kcal/g)
Eulacho	n (continued)									
76	25	48.7	64	17.5	3.9	16.9	123	7.0	7.3	2.:
77	25	44.3	63	16.4	3.8	15.8	121	7.4	7.7	2.1
78	25	39.6	63	14.7	4.1	14.1	104	7.1	7.4	2.0
79	25	31.1	64	11.2	4.4	10.7	83	7.4	7.8	2.1
80	25	35.5	64	12.8	4.2	12.2	91	7.1	7.4	2.0
Pacific c	od									
81	17	160.6	80	32.1	22.0	25.1	148	4.6	5.9	0.9
82	17	199.4	79	41.9	13.3	36.3	184	4.4	5.1	0.9
83	17	206.2	79	43.3	14.8	36.9	199	4.6	5.4	1.0
84	17	198.5	80	39.7	16.0	33.3	191	4.8	5.7	1.0
85	17	208.9	80	41.8	17.0	34.7	192	4.6	5.5	0.9
86	17	192.1	79	40.3	15.2	34.2	186	4.6	5.4	1.0
87	17	166.4	79	34.9	16.7	29.1	155	4.6	5.3	0.9
88	17	184.1	78	40.5	15.0	34.4	182	4.5	5.3	1.0
89	17	163.8	78	36.0	20.5	28.7	152	4.4	5.5	1.0
90	17	152.2	77	35.0	15.2	29.7	135	4.4	5.0	1.0
91	26	228.0	80	45.6	16.0	38.3	205	4.5	5.4	0.9
92	26	352.0	81	66.9	18.9	54.2	314	4.7	5.8	0.9
93	26	691.9	79	145.3	16.7	121.1	654	4.7		0.9
94	20	250.7	80	50.1	14.5	42.9	221	4.5	5.4 5.2	0.9
95	27	331.7	80	66.3	19.5	53.4	292	4.4		
96	27	355.2	80 80	71.0	19.5				5.5	0.9
97	27	322.0	80	64.4	20.0	59.7 51.5	355 296	5.0 4.6	5.9 5.7	1.0 0.9
Valleye	nollock							×		
98	11	1,039.5	78	228.7	12.3	200.6	1,140	5.0	5.7	1.1
99	11	705.6	70 79	148.2	21.4	116.4	1,140 696	4.7	6.0	1.1
100	11	762.9	79 79	148.2	12.4	140.4	769	4.7	5.5	1.0
101	11	576.5	77	132.6	10.9	118.2	650	4.8 4.9	5.5 5.5	1.0
101	11	1,064.5	78	234.2	14.5	200.1	1,120	4.9	5.6	1.1
102	11	904.9	76	217.2	14.5	181.0	1,120	4.8 4.9	5.8 5.9	1.1
103	11	757.0	75	189.3	9.6	171.1	965	4.9 5.1		
105	11	783.6	78	189.5	13.6	171.1	827		5.6	1.3
105	11	853.8	78 76	204.9	15.0	148.9	827 1,000	4.8	5.6	1.1
100	11	911.8	78	204.9 200.6				4.9	5.7	1.2
107	15	291.5	78 78	200.8 64.1	12.7	175.1	1,020	5.1	5.8	1.1
108	15	151.1	78 78	33.2	11.8	56.6	340	5.3	6.0	1.2
110	15	469.5	78 77	33.2 108.0	12.3	29.2	163	4.9	5.6	1.1
111	15	469.5 339.6			12.2	94.8	594 404	5.5	6.3	1.3
112	22	100.3	74 78	88.3 22.1	10.0 14.1	79.5 19.0	494 115	5.6 5.2	6.2 6.1	1.5 1.1

. . . .

		• •		Whole body	1			Energ	gy value	
S coies/ Sample number	Collection group ^a	Wet mass (g) ^b	Percent moisture	Dry mass (g)	Percent ash ^C	Ash-free dry mass (g)	Total sample (kcal)	Dry mass (kcal/g)	Ash-free dry mass (kcal/g)	Wet mass (estimate (kcal/g)
Walleye	pollock (conti	nued)							-	
113	22	49.1	76	11.8	14.2	10.1	57	4.8	5.6	1.3
114	22	61.9	76	14.9	12.1	13.1	73	4.9	5.6	1.2
115	22	68.9	77	15.8	13.0	13.8	48	3.0	3.5	0.7
116	22	79.8	77	18.4	13.0	16.0	55	3.0	3.4	0.5
117	22	74.8	76	17.9	15.8	15.1	93	5.2	6.2	1.2
118	22	68.0	7 6	16.3	15.4	13.8	85	5.2	6.2	1.3
119	22	106.9	77	24.6	14.8	21.0	135	5.5	6.4	1.3
120	22	62.0	76	14.9	11.7	13.1	77	5.2	5.9	1.2
121	22	106.8	76	25.6	15.0	21.8	133	5.2	6.1	1.2
122	24	70.7	78	15.5	13.6	13.4	82	5.3	6.1	1.2
123	24	54.7	79	11.5	12.9	10.0	56	4.9	5.6	1.0
124	24	53.0	79	11.1	14.3	9.5	55	4.9	5.8	1.0
125	24	66.8	79	14.0	14.3	12.0	73	5.2	6.1	1.1
126	24	41.6	80	8.3	13.0	7.2	39	4.7	5.4	0.9
127	24	42.9	80	8.6	13.5	7.4	43	5.0	5.8	· 1.0
128	24	69.8	79	14.7	12.9	12.8	73	5.0	5.7	1.0
129	24	73.4	78	16.2	10.9	14.4	86	5.3	6.0	1.2
130	24	63.8	79	13.4	12.4	11.7	63	4.7	5.4	1.0
131	24	70.7	78	15.6	12.7	13.6	84	5.4	6.2	1.2
Pacific c	cean perch									
132	5	433.7	71	125.8	13.8	108.4	654	5.2	6.0	1.5
133	5	771.3	74	200.5	17.7	165.1	1,060	5.3	6.4	1.4
134	5	1,011.1	72	283.1	13.9	243.7	1,640	5.8	6.7	1.6
135	5	883.8	73	238.6	17.4	197.1	1,290	5.4	6.5	1.5
136	5	750.5	71	217.6	15.9	183.1	1,260	5.8	6.9	1.7
137	5	256.4	77	59.0	14.3	50.5	336	5.7	6.7	1.3
138	5	888.5	72	248.8	18.6	202.6	1,240	5.0	6.1	1.4
139	5	965.4	73	260.7	16.3	218.2	1,330	5.1	6.1	1.4
Dusky ro	ockfish									
140	28	306.9	75	76.7	16.4	64.1	414	5.4	6.5	1.3
141	28	373.3	74	97.1	15.4	82.1	553	5.7	6.7	1.5
142	29	322.9	73	87.2	16.7	72.7	471	5.4	6.5	1.5
143	29	362.8	73	98.0	14.8	83.4	558	5.7	6.7	1.5
144	29	389.3	72	109.0	16.8	90.7	578	5.3	6.4	1.5
Northerr	n rockfish									
145	8	373.5	70	112.1	13.3	97.1	627	5.6	6.5	1.7
146	8	275.3	71	79.8	12.1	70.2	415	5.2	5.9	1.5
147	8	288.3	70	86.5	12.3	75.8	467	5.4	6.2	1.6

				Whole body	/			Energ	gy value	
Species/ Sample number	Collection group ^a	Wet mass (g) ^b	Percent moisture	Dry mass (g)	Percent ash ^c	Ash-free dry mass (g)	Total sample (kcal)	Dry mass (kcal/g)	Ash-free dry mass (kcal/g)	Wet mas (estimate (kcal/g)
Northern	n rockfish (con	tinued)		-						
148	8	292.8	69	90.8	15.2	77.0	481	5.3	6.2	1.0
149	8	323.1	72	90.5	14.3	77.5	479	5.3	6.2	1.5
150	8	345.9	70	103.8	13.7	89.6	550	5.3	6.1	1.0
151	8	410.8	69	127.3	12.9	110.9	726	5.7	6.5	1.1
152	8	361.5	70	108.5	14.7	92.5	596	5.5	6.4	1.0
153	8	352.2	70	105.7	13.0	91.9	571	5.4	6.2	1.0
154	8	364.6	68	116.7	14.7	99.5	642	5.5	6.4	1.8
155	8	381.3	69	118.2	13.5	102.2	638	5.4	6.2	1.3
156	18	341.4	72	95.6	13.3	81.9	488	5.1	6.0	1.4
157	18	385.7	74	100.3	14.5	84.5	488	4.8	5.7	1.2
158	18	432.6	76	100.5	13.8	84.5 89.1	481	4.8	5.6	1.2
159	18	277.0	73	74.8	13.7	64.5	389	4.8 5.2		
160	18	448.9	73	74.8 116.7	15.7	64.5 97.0			6.0	1.4
161	18	222.6	74	55.7			607	5.2	6.3	1.4
162	18	384.2	73 74	99.9	17.6	45.9	284	5.1	6.2	1.3
162	18	203.0	74 74	52.8	18.5	81.5	469	4.7	5.8	1.2
164	18	327.1	74	52.8 81.8	16.9	43.8	253	4.8	5.8	1.2
165	18	493.6	73 69	153.0	21.6 12.6	64.1 133.8	409 842	5.0	6.4	1.3
			09	155.0	12.0	133.8	842	5.5	6.3	1.7
	(unidentified)									
166	5	809.3	71	234.7	19.3	189.4	1,240	5.3	6.5	1.5
167	5	362.3	77	83.3	20.0	66.7	383	4.6	5.7	1.1
168	5	472.5	80	94.5	16.0	79.4	473	5.0	6.0	1.0
169	.5	154.2	80	30.8	14.0	26.5	154	5.0	5.8	1.0
170	5	879.1	73	237.4	16.3	198.7	1,310	5.5	6.6	1.5
171	5	502.1	75	125.5	16.8	104.4	678	5.4	6.5	1.4
172	5	846.6	70	254.0	16.0	213.3	1,470	5.8	6.9	1.7
173	5	581.0	68	185.9	15.9	156.3	1,080	5.8	6.9	1.9
174	5	883.8	70	265.1	15.3	224.5	1,220	4.6	5.4	1.4
Sablefish										
175	5	586.2	80	117.2	8.5	107.3	633	5.4	5.9	1.1
176	5	499.1	7 9	104.8	9.0	95.3	535	5.1	5.6	1.1
177	5	525.8	78	115.7	9.5	104.6	636	5.5	6.1	1.2
178	5	462.5	79	97.1	9.0	88.3	515	5.3	5.8	1.1
179	5	632.7	75	158.2	8.0	145.5	965	6.1	6.6	1.5
180	5	711.4	7 6	170.7	9.2	155.1	1,020	6.0	6.6	1.4
181	5	706.9	7 9	148.4	12.4	130.1	787	5.3	6.1	1.1
182	5	820.7	80	164.1	10.0	147.7	952	5.8	6.4	1.2
183 .	5	887.1	79	186.3	11.0	165.9	1,040	5.6	6.3	1.2
184	5	832.3	71	241.4	6.2	226.4	1,670	6.9	7.4	2.0

				Whole body	1			Energ	gy value	
Sacies/ Saciele number	Collection group ^a	Wet mass (g) ^b	Percent moisture	Dry mass (g)	Percent ash ^c	Ash-free dry mass (g)	Total sample (kcal)	Dry mass (kcal/g)	Ash-free dry mass (kcal/g)	Wet mass (estimate) (kcal/g)
Sablefis	h (continued)									
185	9	258.0	73	69.7	8.9	63.5	397	5.7	6.3	1.5
186	9	183.6	75	45.9	10.0	41.3	252	5.5	6.1	1.4
187	9	249.0	76	59.8	10.4	53.5	323	5.4	6.0	1.3
188	22	412.5	78	90.8	13.6	78.4	508	5.6	6.5	1.2
189	24	473.9	76	113.7	9.2	103.3	671	5.9	6.5	1.4
190	24	290.1	7 9	60.9	11.0	54.2	341	5.6	6.3	1.2
191	24	355.0	78	78.1	10.5	69.9	422	5.4	6.0	1.2
192	24	252.8	78	55.6	10.9	49.5	306	5.5	6.2	1.2
Armorhe	ead sculpin									
193	17	26 0.0	80	52.0	22.5	40.3	208	4.0	5.2	0.8
194	17	242.3	78	53.3	22.3	41.4	240	4.5	5.8	1.0
195	17	231.5	77	53.2	19.1	43.1	234	4.4	5.4	1.0
196	17	227.7	78	50.1	28.2	36.0	180	3.6	5.0	0.8
197	17	260.9	78	57.4	19.1	46.4	253	4.4	5.4	1.0
198	17	260.4	78	57.3	25.0	43.0	223	3.9	5.2	0.9
199	17	240.7	78	53.0	24.1	40.2	212	4.0	5.3	0.9
200	17	246.0	76	59.0	28.3	42.3	248	4.2	5.9	1.0
Blackfin	sculpin									
201	7	59.2	80	11.8	24.5	8.9	51	4.3	5.7	0.9
202	7	52.1	80	10.4	22.0	8.1	43	4.1	5.3	0.8
203	7	49.7	79	10.4	22.9	8.1	41	3.9	5.1	0.8
Sculpin	(Triglops sp.)									
204	17	12.4	75	3.1	16.8	2.6	14	4.6	5.4	1.1
205	17	55.3	73	14.9	16.3	12.5	75	5.0	6.0	1.4
206	17	64.9	73	17.5	17.8	14.4	84	4.8	5.8	1.3
207	17	61.9	74	16.1	20.0	12.9	76	4.7	5.9	1.2
208	17	26.1	74	6.8	17.3	5.6	30	4.4	5.3	1.1
209	17	9.3	74	2.4	0.0	2.4	12	4.8	4.8	1.3
210	17	46.7	75	11.7	14.0	10.0	58	5.0	5.8	1.2
Sculpin ((unidentified)									
211	23	542.2	77	124.7	15.2	105.7	611	4.9	5.8	1.1
212	23	562.4	78	123.7	18.2	101.2	582	4.7	5.7	1.0
213	23	520.2	76	124.8	19.2	100.9	599	4.8	5.9	1.2
214	23	483.0	78	106.3	17.7	87.4	499	4.7	5.7	1.0
215	23	481.6	76	115.6	15.8	97.3	589	5.1	6.1	1.2

				Whole body	y		Energy value				
Species/ Sample numb e r	Collection group ^a	Wet mass (g) ^b	Percent moisture	Dry mass (g)	Percent ash ^C	Ash-free dry mass (g)	Total sample (kcal)	Dry mass (kcal/g)	Ash-free dry mass (kcal/g)	Wet mass (estimate (kcal/g)	
Snailfist	n (unidentified)									
216	14	4.4	78	1.0	0.0	1.0	4	4.1	4.1	0.9	
Searcher	•										
217	7	285.0	73	76.9	11.9	67.8	392	5.1	5.8	1.4	
218	7	296.5	75 74	70.5	11.5	66.4	385	5.0	5.8	1.3	
219	7	293.0	74	76.2	13.8	65.6	396	5.2	5.8 6.0	1.4	
220	7	220.8	73	59.6	13.8	50.8	316	5.3	6.2	1.4	
221	7	335.2	73	90.5	14.8	50.8 78.4	443	5.5 4.9	5.6	1.4	
222	16	290.7	73 77	66.9	13.5	57.0	341	4.9 5.1	6.0	1.2	
223	16	367.8	76	88.3	14.0	77.6	468	5.3	6.0	1.2	
Pacific s	andfish										
224	22	82.8	77	19.0	15.2	16.1	07	<i>c</i> ,			
225	22	61.0	78	13.4	13.2 12.7	16.1	97	5.1	6.0	1.2	
226	22	70.3	78 76	15.4 16.9	12.7	11.7	67 0(5.0	5.7	1.1	
227	22	78.5	80	15.7	10.8	15.0	96	5.7	6.4	1.4	
228	22	52.5	· 84	8.4	11.5	13.9	82	5.2	5.9	1.0	
229	22	54.7	84 77	8.4 12.6	14.4 13.9	7.2	40	4.8	5.6	0.8	
230	22	60.3	76	12.0	13.9	10.8	68 70	5.4	6.3	1.2	
231	22	89.8	76	14.5 21.6	12.9	12.6	78	5.4	6.2	1.3	
232	22	53.3	70 77	12.3	12.1	18.9 10.7	125 66	5.8	6.6	1.4	
232	22	37.8	79	7.9	13.0	6.8	66 40	5.4 5.0	6.2 5.8	1.2 1.1	
Arrowtor	oth flounder										
234	9	248.0	76	59.5	10.8	53.1	210				
234	9	248.0					310	5.2	5.8	1.3	
235	9		72	61.0	9.6	55.1	348	5.7	6.3	1.6	
230		218.9 324.0	73 75	59.1	8.9	53.8	337	5.7	6.3	1.5	
237	9	324.0 181.0	75 76	81.0 43.4	9.2	73.5	454	5.6	6.2	1.4	
238	9	238.4	76 74	43.4 62.0	9.6	39.3	235	5.4	6.0	1.3	
239	9	238.4 168.3	74 78	62.0 37.0	11.2	55.1	335	5.4	6.1	1.4	
240	9	309.3	78 76	57.0 74.2	13.2 10.0	32.1 66.8	181	4.9	5.6	1.1	
242	9	281.5	76 76	74.2 67.6	10.0	60.8	379	5.1	5.7	1.2	
242 243	9	231.5	76 76	55.5			358	5.3	5.9	1.3	
243 244	9	231.4 214.0	76 76	55.5 5 1.4	10.4 12.1	49.8 45.2	283	5.1	5.7	1.2	
244	9	214.0 224.2	76 76	51.4 53.8	12.1	45.2 46.4	262 274	5.1	5.8	1.2	
245	9	184.1	76 76	55.8 44.2			274	5.1	5.9	1.2	
240	9 17	290.5	75	44.2 72.6	11.7	39.0	225	5.1	5.8	1.2	
247	17	290.3 182.5	73 78	40.2	11.2	64.5 25.2	385	5.3	6.0	1.3	
248 249	17				12.3	35.2	205	5.1	5.8	1.1	
677	17	185.7	79	39.0	12.4	34.2	187	4.8	5.5	1.0	

	•			Whole body	Y		Energy value			
Sumple Sumple numper	Collection group ^a	Wet mass (g) ^b	Percent moisture	Dry mass (g)	Percent ash ^C	Ash-free dry mass (g)	Total sample (kcal)	Dry mass (kcal/g)	Ash-free dry mass (kcal/g)	Wet mass (estimate) (kcal/g)
Arrowto	oth flounder (continued)								
251	17	306.2	76	73.5	10.0	66.1	397	5.4	6.0	1.3
252	17	228.5	77	52.6	10.4	47.1	252	4.8	5.4	1.1
253	17	134.4	79	28.2	13.8	24.3	130	4.6	5.3	1.0
254	17	261.7	77	60.2	11.3	53.4	301	5.0	5.6	1.2
255	17	245.2	77	56.4	11.3	50.0	299	5.3	6.0	1.2
256	17	279.9	78	61.6	10.9	54.9	308	5.0	5.6	1.1
257	25	182.9	80	36.6	18.0	30.0	161	4.4	5.4	0.9
258	25	212.5	78	46.8	12.7	40.8	210	4.5	5.1	1.0
259	25	478.9	72	134.1	8.2	123.1	818	6.1	6.6	1.7
260	25	425.1	77	97.8	10.4	87.6	528	5.4	6.0	1.2
261	25	384.9	75	96.2	10.8	85.8	539	5.6	6.3	1.4
262	25	233.5	76	56.0	10.4	50.2	303	5.4	6.0	1.3
263	25	225.8	78	49.7	12.7	43.4	248	5.0	5.7	1.1
264	25	320.2	77	73.6	13.5	63.7	368	5.0	5.8	1.1
265	25	195.9	76	47.0	10.8	41.9	254	5.4	6.1	1.3
266	25	158.3	77	36.4	13.0	31.7	171	4.7	5.4	1.1
267	25	161.1	78	35.4	11.8	31.3	174	4.9	5.6	1.1
Magistra	ite armhook so	luid								
268	6	689.5	80	137.9	8.0	126.9	883	6.4	7.0	1.3
269	6	850.7	76	204.2	6.7	190.6	1,330	6.5	7.0	1.6
270	6	866.8	77	199.4	6.1	187.2	1,360	6.8	7.3	1.6
271	6	421.2	79	88.5	7.6	81.7	531	6.0	6.5	1.3
272	6	704.6	80	140.9	8.0	129.6	846	6.0	6.5	1.2
273	6	201.5	81	38.3	8.4	35.1	222	5.8	6.3	1.1
274	6	760.4	78	167.3	6.4	156.6	1,070	6.4	6.8	1.4
275	6	310.9	78	68.4	7.7	63.1	383	5.6	6.1	1.2
276	6	222.0	81	42.2	8.4	38.6	236	5.6	6.1	1.1
277	6	278.2	75	69.6	6.0	65.4	424	6.1	6.5	1.5
	quid (<i>Berryteı</i>	• •								
278	21	429.1	82	77.2	8.3	70.8	394	5.1	5.6	0.9
	cific gonate sq					105 5				
279 ^d	3	782.7	82	140.9	5.0	133.8	873	6.2	6.5	1.1
	ubhook squid									
280	1	362.3	74	94.2	6.5	88.0	565	6.0	6.4	1.6
281	1 .	241.6	72	67.6	5.4	64.0	386	5.7	6.0	1.6
282 ^e 283 ^{e,f}	2	784.8	79	164.8	5.7	155.4	923	5.6	5.9	1.2
702 E./	2	714.3	79	150.0	4.8	142.9	855	5.7	6.0	1.2

Species/ Sample Collection number group ^a			Whole body					Energy value			
	Collection group ^a	Wet mass (g) ^b	Percent moisture	Dry mass (g)	Percent ash ^c	Ash-free dry mass (g)	Total sample (kcal)	Dry mass (kcal/g)	Ash-free dry mass (kcal/g)	Wet mass (estimate) (kcal/g)	
Boreal cl	ubhook squid	(continued	1)								
Boreal cl 284 ^{e,g}	ubhook squid 2	(continued 799.8	l) 79	168.0	5.2	159.2	957	5.7	6.0	1.2	
	_			168.0 190.1	5.2 5.4	159.2 179.7	957 1,100	5.7 5.8	6.0 6.1		
284 ^e ,g	2	799.8	79							1.2 1.3 1.1	
284 ^e ,g 285 ^{e,h}	2 2	799.8 864.1	79 78	190.1	5.4	179.7	1,100	5.8	6.1	1.3	
284 e,g 285 e,h 286 e,i 287	2 2 2	799.8 864.1 687.1	79 78 80	190.1 137.4	5.4 5.5	179.7 129.9	1,100 742	5.8 5.4	6.1 5.7	1.3 1.1	

a The date and location of each collection group are given in Appendix Table A-1.
 b Total wet mass measured upon receipt by the analytical laboratory.

^b Total wet mass measured u
^c Dry mass basis.
^d Mature female with eggs.
^e Mature specimen.
^f Both fins missing.
^g One tentacle missing
^h Parts of tentacles missing.
ⁱ One fin missing.

mmple number b	Collection group ^C	Species	Sex	Length (cm) d	Wet mass (g) ^e
98	11	Walleye pollock	Male	50.0	1,039.5
99	11	Walleye pollock	Male	46.0	705.6
100	11	Walleye pollock	Male	46.0	762.9
101	11	Walleye pollock	Male	43.0	576.5
102	11	Walleye pollock	Female	53.0	1,064.5
103	11	Walleye pollock	Female	51.0	904.9
104	11	Walleye pollock	Female	46.0	757.0
105	11	Walleye pollock	Female	48.0	783.6
106	11	Walleye pollock	Female	49.0	853.8
107	11	Walleye pollock	NR	50.0	911.8
145	8	Northern rockfish	Male	NR	373.5
146	8	Northern rockfish	Male	NR	275.3
147	8	Northern rockfish	Male	NR	288.3
148	8	Northern rockfish	Male	NR	292.8
149	8	Northern rockfish	Male	NR	323.1
150	8	Northern rockfish	Male	NR	345.9
151	8	Northern rockfish	Female	NR	410.8
152	8	Northern rockfish	Female	NR	361.5
153	8	Northern rockfish	Female	NR	352.2
154	8	Northern rockfish	Female	NR	364.6
155	8	Northern rockfish	Female	NR	381.3
185	9	Sablefish	Male	NR	258.0
186	9	Sablefish	Male	NR	183.6
187	9	Sablefish	Male	NR	249.0
201	. 7	Blackfin sculpin	Male	NR	59.2
202	7	Blackfin sculpin	Male	· NR	52.1
203	7	Blackfin sculpin	Female	NR	49.7
217	7	Searcher	Female	NR	285.0
218	7	Searcher	Female	NR	296.5
234	9	Arrowtooth flounder	Male	NR	248.0
235	9	Arrowtooth flounder	Male	NR	217.8
236	9	Arrowtooth flounder	Male	NR	218.9
237	9	Arrowtooth flounder	Male	NR	324.0
238	9	Arrowtooth flounder	Male	NR	181.0
239	9	Arrowtooth flounder	Female	NR	238.4

Appendix Table A-3.--Sample number, collection group, species, sex, length, and wet mass of whole bodies of 42 fish and 20 squid specimens collected in the Bering Sea and North Pacific Ocean.^a

Sample number b	Collection group ^c	Species	Sex	Length $(cm)^d$	Wet mass (g) ^e
240	9	Arrowtooth flounder	Female	NR	168.3
241	9	Arrowtooth flounder	Female	NR	309.3
242	9	Arrowtooth flounder	Female	NR	281.5
243	9	Arrowtooth flounder	Female	NR	231.4
244	9	Arrowtooth flounder	Female	NR	214.0
245	9	Arrowtooth flounder	Female	NR	224.2
246	9	Arrowtooth flounder	Female	NR	184.1
268	6	Magistrate armhook squid	Male	NR	689.5
269	6	Magistrate armhook squid	Male	NR	850.7
270	6	Magistrate armhook squid	Male	NR	866.8
271	6	Magistrate armhook squid	Male	NR	421.2
272	6	Magistrate armhook squid	Male	NR	704.6
273	6	Magistrate armhook squid	Female	NR	201.5
274	6	Magistrate armhook squid	Female	NR	760.4
275	6	Magistrate armhook squid	Female	NR	310.9
276	6	Magistrate armhook squid	Female	NR	222.0
277	6	Magistrate armhook squid	Female	NR	278.2
279	3	Boreopacific gonate squid	Female	26.2	782.7
280	· 1	Boreal clubhook squid	Male	22.7	362.3
281	1	Boreal clubhook squid	Male	18.6	241.6
282	2	Boreal clubhook squid	Female	31.3	784.8
283	2	Boreal clubhook squid	Female	28.3	714.3
284	2	Boreal clubhook squid	Female	28.8	799.8
285	2	Boreal clubhook squid	Female	32.0	864.1
286	2	Boreal clubhook squid	Female	29.4	687.1
287	4	Boreal clubhook squid	Female	29.4	715.0
288	1	Neon flying squid	Female	38.2	1,720.8

NR = data not recorded.

a This table lists only the fish and squid samples from Appendix Table A-2 for which sex or length measurements were recorded.

b Identical to the samples listed in Appendix Table A-2.
c The date and location of each collection group are given in Appendix Table A-1.
d Standard length for fishes and dorsal mantle length for squids.
e Wet mass recorded after thawing upon receipt by the analytical laboratory.

RECENT TECHNICAL MEMORANDUMS

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22167. Paper copies vary in price. Microfiche copies cost \$3.50.

AFSC-

- 31 RONHOLT. L. L., K. TESHIMA, and W. D. KESSLER. 1994. The groundfish resources of the Aleutian Islands region and southern Bering Sea 1980, 1983, and 1986, 351 p. NTIS number pending.
- 30 LORENZ, J. M. 1994. Distribution and habitat of adult salmon in the Situk River, Alaska: Potential impacts of flooding from Russell Fiord, 27 p. NTIS number pending.
- 29 IGNELL, S. E., L. J. SIMON, and M. L. DAHLBERG. 1994. Estimation of salmonid bycatch in the 1989 Japanese squid driftnet fishery, 45 p. NTIS number pending.
- 28 MORTENSEN, D. G., and H. SAVIKKO. 1993. Effects of water temperature on growth of juvenile pink salmon (<u>Oncorhynchus gorbuscha</u>), 12 p. NTIS number pending.
- 27 LOW, L-L. (coordinator). 1994. Status of living marine resources off Alaska, 1993, 110 p. NTIS number pending.
- 26 LOW, L-L. (coordinator). 1993. Status of living marine resources off the Pacific coast of the United States for 1993, 90 p. NTIS number pending.
- 25 KINOSHITA, R. K., A. GREIG, J. D. HASTIE, and J. M. TERRY. 1993. Economic status of the groundfish fisheries off Alaska, 1992, 102 p. NTIS number pending.
- 24 SINCLAIR, E. H. (editor) 1993. Fur seal investigations, 1991, 142 p. NTIS No. PB94-118171.
- 23 PARKS, N. B., F. R. SHAW, and R. L HENRY. 1993. Results of a 1988 trawl survey of groundfish resources of the upper continental slope off Oregon, 164 p. NTIS No. PB94-118163.
- 22 YANG, M-S. 1993. Food habits of the commercially important groundfishes in the Gulf of Alaska in 1990, 150 p. NTIS No. PB94-112463.
- 21 KINOSHITA, R. K., and J. M. TERRY. 1993. Oregon, Washington, and Alaska exports of edible fishery products, 1992, 52 p. NTIS No. PB93-226652.
- 20 REEVES, J. E. 1993. Use of lower minimum size limits to reduce discards in the Bristol Bay red king crab (Paralithodes camtschaticus) fishery, 16 p. NTIS No. PB93-228187.
- 19 SYRJALA, S. E. 1993. Species-specific stratification and the estimate of groundfish biomass in the Eastern Bering Sea, 20 p. NTIS number pending.
- 18 PELLA, J., M. HOFFMAN, S. HOFFMAN, M. MASUDA, S. NELSON, and L. TALLEY. 1993. Adult sockeye and pink salmon tagging experiments for separating stocks in northern British Columbia and southern Southeast Alaska, 1982-1985, 134 p. NTIS No. PB93-226660.
- 17 SEASE, J. L., J. P. LEWIS, D. C. MCALLISTER, R. L. MERRICK, and S. M. MELLO. 1993. Aerial and ship-based surveys of Steller sea lions (<u>Eumetopias jubatus</u>) in Southeast Alaska, the Gulf of Alaska, and Aleutian Islands during June and July 1992, 57 p. NTIS No. PB93-226025.

Reproduced by NTIS National Technical Information Service U.S. Department of Commerce Springfield, VA 22161

This report was printed specifically for your order from our collection of more than 2 million technical reports.

For economy and efficiency, NTIS does not maintain stock of its vast collection of technical reports. Rather, most documents are printed for each order. Your copy is the best possible reproduction available from our master archive. If you have any questions concerning this document or any order you placed with NTIS, please call our Customer Services Department at (703)487-4660.

Always think of NTIS when you want:

Access to the technical, scientific, and engineering results generated by the ongoing multibillion dollar R&D program of the U.S. Government. K&D results from Japan, West Germany, Great Britain, and some 20 other countries, most of it reported in English.

NTIS also operates two centers that can provide you with valuable information:

ZZ The Federal Computer Products Center - offers software and datafiles produced by Federal agencies.

The Center for the Utilization of Federal Technology - gives you access to the best of Federal technologies and laboratory resources.

For more information about NTIS, send for our FREE NTIS *Products and* Services *Catalog* which describes how you can access this U.S. and foreign Government technology. Call (703)487-4650 or send this sheet to NTIS, U.S. Department of Commerce, Springfield, VA 22161. Ask for catalog, PR-827.

Name _

Address _

Telephone ____

- Your Source to U.S. and Foreign Government Research and Technology.

is made in filling your order, if the item was received refund. A replacement will be provided if an error NTIS does not permit return of items for credit or in damaged condition, or if the item is defective.